VYPR BYT
04-14-2014, 01:40 PM
Interesting read on Forbes.com
http://www.forbes.com/sites/daviddisalvo/2014/04/06/the-surprising-connection-between-playing-video-games-and-a-thicker-brain/
The Surprising Connection Between Playing Video Games And A Thicker Brain
For all the negative news about the alleged downsides of playing video games, it’s always surprising to come across research that shows a potentially huge upside. A new study fills the bill by showing that heavy video game play is associated with greater “cortical thickness” – a neuroscience term meaning greater density in specific brain areas.
Researchers studied the brains of 152 adolescents, both male and female, who averaged about 12.6 hours of video gaming a week. As one might guess, the males, on average, played more than the females, but all of the participants spent a significant amount of time with a gaming console. The research team wanted to know if more time spent gaming correlated with differences in participants’ brains.
What they found is that the brains of adolescents that spent the most time playing video games showed greater cortical thickness in two brain areas: the left dorsolateral prefrontal cortex (DLPFC) and the left frontal eye field (FEF).
The prefrontal cortex is often referred to as our brain’s command and control center. It’s where higher order thinking takes place, like decision-making and self-control. Previous research has shown that the DLPFC plays a big part in how we process complex decisions, particularly those that involve weighing options that include achieving short-term objectives with long-term implications. It’s also where we make use of our brain’s working memory resources – the information we keep “top of mind” for quick access when making a decision.
The FEF is a brain area central to how we process visual-motor information and make judgments about how to handle external stimuli. It’s also important in decision-making because it allows us to efficiently figure out what sort of reaction best suits what’s happening around us. The term “hand-eye coordination” is part of this process.
Together, the DLPFC and FEF are crucial players in our brain’s executive decision-making system. Greater “thickness” in these brain areas (in other words, more connections between brain cells) indicates a greater ability to juggle multiple variables, whether those variables have immediate or long-term implications, or both.
While this study doesn’t quite show that playing hours of videos games each week causes these brain areas to grow thicker, the correlation is strong – strong enough to consider the possibility that gaming is sort of like weight lifting for the brain.
And that, even more than the video game connection, is what makes this study really interesting. It suggests that the popular terms “brain training” and “brain fitness” are more than marketing ploys to sell specialized software. If it’s true that playing video games is not unlike exercise that beefs up our brain’s decision-making brawn, then it logically follows that we can not only perceptually, but physically improve our brains with practices designed for the purpose. Future research will continue exploring precisely that possibility.
The study was published in the online journal PLoS ONE.
http://www.forbes.com/sites/daviddisalvo/2014/04/06/the-surprising-connection-between-playing-video-games-and-a-thicker-brain/
The Surprising Connection Between Playing Video Games And A Thicker Brain
For all the negative news about the alleged downsides of playing video games, it’s always surprising to come across research that shows a potentially huge upside. A new study fills the bill by showing that heavy video game play is associated with greater “cortical thickness” – a neuroscience term meaning greater density in specific brain areas.
Researchers studied the brains of 152 adolescents, both male and female, who averaged about 12.6 hours of video gaming a week. As one might guess, the males, on average, played more than the females, but all of the participants spent a significant amount of time with a gaming console. The research team wanted to know if more time spent gaming correlated with differences in participants’ brains.
What they found is that the brains of adolescents that spent the most time playing video games showed greater cortical thickness in two brain areas: the left dorsolateral prefrontal cortex (DLPFC) and the left frontal eye field (FEF).
The prefrontal cortex is often referred to as our brain’s command and control center. It’s where higher order thinking takes place, like decision-making and self-control. Previous research has shown that the DLPFC plays a big part in how we process complex decisions, particularly those that involve weighing options that include achieving short-term objectives with long-term implications. It’s also where we make use of our brain’s working memory resources – the information we keep “top of mind” for quick access when making a decision.
The FEF is a brain area central to how we process visual-motor information and make judgments about how to handle external stimuli. It’s also important in decision-making because it allows us to efficiently figure out what sort of reaction best suits what’s happening around us. The term “hand-eye coordination” is part of this process.
Together, the DLPFC and FEF are crucial players in our brain’s executive decision-making system. Greater “thickness” in these brain areas (in other words, more connections between brain cells) indicates a greater ability to juggle multiple variables, whether those variables have immediate or long-term implications, or both.
While this study doesn’t quite show that playing hours of videos games each week causes these brain areas to grow thicker, the correlation is strong – strong enough to consider the possibility that gaming is sort of like weight lifting for the brain.
And that, even more than the video game connection, is what makes this study really interesting. It suggests that the popular terms “brain training” and “brain fitness” are more than marketing ploys to sell specialized software. If it’s true that playing video games is not unlike exercise that beefs up our brain’s decision-making brawn, then it logically follows that we can not only perceptually, but physically improve our brains with practices designed for the purpose. Future research will continue exploring precisely that possibility.
The study was published in the online journal PLoS ONE.